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Jonsson Cardinals

Definition
We say κ→ [κ]<ωκ if for any coloring c of the finite subsets of κ,
there is an H ⊆ κ of cardinality κ such that the range of
c � [H]<ω is a proper subset of κ.

A cardinal κ satisfying the above is called a Jonsson cardinal.
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Jonsson Cardinals

Looking at the negation:

κ9 [κ]<ωκ means that we can color the finite subsets of κ in
such a way that every color is obtained on any subset of
cardinality κ.

We say that κ carries a Jonsson algebra.
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Jonsson Cardinals

Basic Facts

ℵ0 carries a Jonsson algebra.

If κ carries a Jonsson algebra, so does κ+. (Hence each
ℵn carries one.)

It is unknown if ℵω can be a Jonsson cardinal. We’ll deal
with ℵω+1 shortly.
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Jonsson Cardinals

Reformulation

A cardinal κ is Jonsson if and only if for every sufficiently large
regular cardinal χ and every x ∈ H(χ), there is an elementary
submodel M of H(χ) such that

x ∈ M

κ ∈ M,

|M ∩ κ| = κ, and

κ * M.

Todd Eisworth



Jonsson Cardinals

Theorem
If κ is a regular Jonsson cardinal, then every stationary subset
of κ reflects.

(Due to Woodin and Tryba independently.)
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Jonsson Cardinals

Let κ be a regular Jonsson cardinal, and suppose M ≺ H(χ)
(for some sufficiently large χ) satisfies

κ ∈ M,

|M ∩ κ| = κ, and

κ * M.

It suffices to prove that every stationary S ⊆ κ in M reflects.
(Why?)
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Jonsson Cardinals

Let S ∈ M be stationary in κ.

Lemma
S \M is stationary.

(Blackboard)
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Thus, we can find δ ∈ S ∩M such that δ = sup(M ∩ δ).

Define
βδ := min(M ∩ κ \ δ). (1)

Note
βδ is a limit ordinal, and

cf(βδ) > ℵ0.
(Why?)
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Jonsson Cardinals

We claim S ∩ βδ is stationary in δ.

Suppose note. Then M contains a closed unbounded C ⊆ βδ
for which S ∩ C = ∅.

We claim that δ ∈ C, and this yields a contradiction.
(Blackboard)
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Corollary

If κ is regular, then κ+ carries a Jonsson algebra.

But what about successors of singular cardinals?

Still open, but much is known. We will handle ℵω+1 next.
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Jonsson Cardinals

Scales

Definition

Let µ be a singular cardinal. A scale for µ is a pair (~µ,~f ) such
that

~µ = 〈µi : i < cf(µ)〉 is an increasing sequence of regular
cardinals with supremum µ

~f = 〈fα : α < µ+〉 is a sequence of functions such that
fα ∈

∏
i<cf(µ) µi ,

if α < β < µ+ then fα <∗ fβ (modulo bounded)
if f ∈

∏
i<cf(µ) µi , then f <∗ fα for some α.
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Fundamental Fact

Theorem (Shelah)
If µ is singular, then a scale for µ exists.

This is a ZFC result, but we don’t have much control over the
sequence ~µ.
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Jonsson Cardinals

Theorem
One more fact... The following two statements are equivalent:

1 λ is a Jonsson cardinal.

2 For every sufficiently large regular χ > λ, whenever we are
given a cardinal κ satisfying κ+ < λ, there is an M ≺ H(χ)
such that

{λ, κ} ∈ M,

|M ∩ λ| = λ,

λ * M, and

κ+ 1 ⊆ M.
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Theorem

Suppose µ is singular, and (~µ,~f ) is a scale for µ for which each
µi carries a Jonsson algebra. Then µ+ carries a Jonsson
algebra.

Suppose not. Let M ≺ H(χ) satisfy
µ+ ∈ M
(~µ,~f ) ∈ M,
cf(µ) + 1 ⊆ M, and
|M ∩ µ+| = µ+, and

We must prove µ+ ⊆ M.
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Jonsson Cardinals

Suffices to prove µ ⊆ M.

Suffices to prove µi ⊆ M for unboundedly many i < cf(µ).

Suffices to prove M ∩ µi is unbounded in M for
unboundedly many i < cf(µ).

A hint: What would happen if this failed? Why would a scale be
useful?
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Corollary
ℵω+1 carries a Jonsson algebra.
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In general, if µ is singular and µ+ is Jonsson, then no
increasing sequence 〈µi : i < cf(µ)〉 consisting of successors of
regular cardinals can be part of a scale for µ.

This can be shown to imply that no collection of µ+ sets in
[µ]<µ can cover [µ]cf(µ), and this in turn is enough to conclude
ADSµ holds.
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Jonsson Cardinals

Our story so far

If µ is singular and µ+ is a Jonsson cardinal, then

Refl(µ+) holds, but

so does ADSµ.

Schizophrenia. And it gets worse.
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Theorem
If µ is singular and µ+ is Jonsson, then there is a proper ideal I
on µ+ such that

I extends the non-stationary ideal

I is cf(µ)-complete

I is θ-indecomposable for all regular θ such that
cf(µ) < θ < µ (so I is closed under increasing unions of
length θ)

I is weakly σ-saturated for some σ < µ (so we cannot find
σ disjoint I-positive sets).
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Jonsson Cardinals

Recall that last time we saw that ADSµ implies that we can find
µ+ disjoint J-positive sets whenever J is a
cf(µ)-indecomposable ideal on µ+ containing all bounded sets.

If µ+ is Jonsson, then there are ideals “close to being dual to
an ultrafilter” that are indecomposable for every regular cardinal
other than cf(µ).

Schizophrenia.
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So what do these ideals look like? They come from
club-guessing, and we’ll look at one example.
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Assume µ is singular of countable cofinality, and let S = Sµ+

ℵ0
.

For δ ∈ S, let Cδ be cofinal of order-type ω such that
〈cf(α) : α ∈ Cδ〉 increases to µ.

Further assume that for every closed unbounded E ⊆ µ+, there
are stationarily many δ ∈ S such that Cδ ⊆∗ E (modulo finite).

(Do such things actually exist?)
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A set A ⊆ µ+ is in I if there is a club E ⊆ µ+ such that

{δ ∈ S : E ∩ A ∩ Cδ is infinite} is non-stationary. (2)

µ+ /∈ I

I is an ideal extending the non-stationary ideal.

If θ is an uncountable regular cardinal, then I is
θ-indecomposable.

If µ+ is a Jonsson cardinal, then I is not weakly
µ-saturated. (Actually, we can improve this, but this makes
the point.)
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