Successors of Singular Cardinals III: On the Schizophrenia of Jonsson Cardinals

Todd Eisworth

Ohio University

February 1, 2012

크 > 크

Todd Eisworth

Definition

We say $\kappa \to [\kappa]_{\kappa}^{<\omega}$ if for any coloring *c* of the finite subsets of κ , there is an $H \subseteq \kappa$ of cardinality κ such that the range of $c \upharpoonright [H]^{<\omega}$ is a proper subset of κ .

イロト イポト イヨト イヨト

Definition

We say $\kappa \to [\kappa]_{\kappa}^{<\omega}$ if for any coloring *c* of the finite subsets of κ , there is an $H \subseteq \kappa$ of cardinality κ such that the range of $c \upharpoonright [H]^{<\omega}$ is a proper subset of κ .

A cardinal κ satisfying the above is called a Jonsson cardinal.

Looking at the negation:

 $\kappa \rightarrow [\kappa]_{\kappa}^{<\omega}$ means that we can color the finite subsets of κ in such a way that every color is obtained on any subset of cardinality κ .

æ

Looking at the negation:

 $\kappa \rightarrow [\kappa]_{\kappa}^{<\omega}$ means that we can color the finite subsets of κ in such a way that every color is obtained on any subset of cardinality κ .

We say that κ carries a Jonsson algebra.

Basic Facts

Todd Eisworth

• \aleph_0 carries a Jonsson algebra.

E 990

・ロト ・聞 ト ・ ヨト ・ ヨトー

Basic Facts

- \aleph_0 carries a Jonsson algebra.
- If κ carries a Jonsson algebra, so does κ^+ . (Hence each \aleph_n carries one.)

< □ > < □ > < □ > < □ >

-

Basic Facts

- \aleph_0 carries a Jonsson algebra.
- If κ carries a Jonsson algebra, so does κ^+ . (Hence each \aleph_n carries one.)
- It is unknown if ℵ_ω can be a Jonsson cardinal. We'll deal with ℵ_{ω+1} shortly.

A cardinal κ is Jonsson if and only if for every sufficiently large regular cardinal χ and every $x \in H(\chi)$, there is an elementary submodel *M* of $H(\chi)$ such that

x ∈ *M*

- $|M \cap \kappa| = \kappa$, and
- κ ⊈ *M*.

イロト イポト イヨト イヨト

э.

If κ is a regular Jonsson cardinal, then every stationary subset of κ reflects.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの

(Due to Woodin and Tryba independently.)

Let κ be a regular Jonsson cardinal, and suppose $M \prec H(\chi)$ (for some sufficiently large χ) satisfies

- κ ∈ M,
- $|M \cap \kappa| = \kappa$, and
- κ ⊈ M.

Let κ be a regular Jonsson cardinal, and suppose $M \prec H(\chi)$ (for some sufficiently large χ) satisfies

- κ ∈ M,
- $|M \cap \kappa| = \kappa$, and

It suffices to prove that every stationary $S \subseteq \kappa$ in *M* reflects. (Why?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let $S \in M$ be stationary in κ .

₹ 990

Let $S \in M$ be stationary in κ .

Lemma

 $S \setminus M$ is stationary.

(Blackboard)

Thus, we can find $\delta \in S \cap M$ such that $\delta = \sup(M \cap \delta)$.

₹ 990

・ロト ・四ト ・ヨト ・ヨト

Thus, we can find $\delta \in S \cap M$ such that $\delta = \sup(M \cap \delta)$. Define

$$\beta_{\delta} := \min(M \cap \kappa \setminus \delta). \tag{1}$$

Thus, we can find $\delta \in S \cap M$ such that $\delta = \sup(M \cap \delta)$. Define

$$\beta_{\delta} := \min(M \cap \kappa \setminus \delta). \tag{1}$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

Note

• β_{δ} is a limit ordinal, and

• $cf(\beta_{\delta}) > \aleph_0$. (Why?)

We claim $S \cap \beta_{\delta}$ is stationary in δ .

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

We claim $S \cap \beta_{\delta}$ is stationary in δ .

Suppose note. Then *M* contains a closed unbounded $C \subseteq \beta_{\delta}$ for which $S \cap C = \emptyset$.

イロト イポト イヨト イヨト

We claim $S \cap \beta_{\delta}$ is stationary in δ .

Suppose note. Then *M* contains a closed unbounded $C \subseteq \beta_{\delta}$ for which $S \cap C = \emptyset$.

We claim that $\delta \in C$, and this yields a contradiction. (Blackboard)

イロト イポト イヨト イヨト

Corollary

If κ is regular, then κ^+ carries a Jonsson algebra.

Corollary

If κ is regular, then κ^+ carries a Jonsson algebra.

But what about successors of singular cardinals?

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ 三日 - のんの

Corollary

If κ is regular, then κ^+ carries a Jonsson algebra.

But what about successors of singular cardinals? Still open, but much is known. We will handle $\aleph_{\omega+1}$ next.

イロト イポト イヨト イヨト

Scales

Definition

Let μ be a singular cardinal. A scale for μ is a pair $(\vec{\mu}, \vec{f})$ such that

- μ
 i = ⟨μ_i : i < cf(μ)⟩ is an increasing sequence of regular cardinals with supremum μ
- $\vec{f} = \langle f_{\alpha} : \alpha < \mu^+ \rangle$ is a sequence of functions such that

•
$$f_{\alpha} \in \prod_{i < \mathsf{cf}(\mu)} \mu_i$$
,

• if $\alpha < \beta < \mu^+$ then $f_{\alpha} <^* f_{\beta}$ (modulo bounded)

イロン 不得 とくほ とくほとう

• if $f \in \prod_{i < cf(\mu)} \mu_i$, then $f <^* f_\alpha$ for some α .

Jonsson Cardinals

Fundamental Fact

Theorem (Shelah)

If μ is singular, then a scale for μ exists.

Todd Eisworth

Fundamental Fact

Theorem (Shelah)

If μ is singular, then a scale for μ exists.

This is a ZFC result, but we don't have much control over the sequence $\vec{\mu}$.

イロト イポト イヨト イヨト

One more fact... The following two statements are equivalent:

- **()** λ is a Jonsson cardinal.
- Por every sufficiently large regular χ > λ, whenever we are given a cardinal κ satisfying κ⁺ < λ, there is an M ≺ H(χ) such that</p>

イロト イポト イヨト イヨト 一臣

- $\{\lambda,\kappa\}\in M$,
- $|\mathbf{M} \cap \lambda| = \lambda$,
- $\lambda \notin M$, and
- *κ* + 1 ⊆ *M*.

Suppose μ is singular, and $(\vec{\mu}, \vec{f})$ is a scale for μ for which each μ_i carries a Jonsson algebra. Then μ^+ carries a Jonsson algebra.

イロト イポト イヨト イヨト 一臣

Suppose μ is singular, and $(\vec{\mu}, \vec{f})$ is a scale for μ for which each μ_i carries a Jonsson algebra. Then μ^+ carries a Jonsson algebra.

Suppose not. Let $M \prec H(\chi)$ satisfy

- $\mu^+ \in M$
- $(\vec{\mu}, \vec{f}) \in M$,
- $cf(\mu) + 1 \subseteq M$, and
- $|\mathbf{M} \cap \mu^+| = \mu^+$, and

ヘロト ヘアト ヘビト ヘビト

Suppose μ is singular, and $(\vec{\mu}, \vec{f})$ is a scale for μ for which each μ_i carries a Jonsson algebra. Then μ^+ carries a Jonsson algebra.

Suppose not. Let $M \prec H(\chi)$ satisfy

- $\mu^+ \in M$
- $(\vec{\mu}, \vec{f}) \in M$,
- $cf(\mu) + 1 \subseteq M$, and
- $|\mathbf{M} \cap \mu^+| = \mu^+$, and

We must prove $\mu^+ \subseteq M$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Todd Eisworth

• Suffices to prove $\mu \subseteq M$.

▲□▶▲□▶▲目▶▲目▶ 目 のへで

- Suffices to prove $\mu \subseteq M$.
- Suffices to prove $\mu_i \subseteq M$ for unboundedly many $i < cf(\mu)$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ 三日 - のんの

- Suffices to prove $\mu \subseteq M$.
- Suffices to prove $\mu_i \subseteq M$ for unboundedly many $i < cf(\mu)$.
- Suffices to prove *M* ∩ µ_i is unbounded in *M* for unboundedly many *i* < cf(µ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Suffices to prove $\mu \subseteq M$.
- Suffices to prove $\mu_i \subseteq M$ for unboundedly many $i < cf(\mu)$.
- Suffices to prove *M* ∩ µ_i is unbounded in *M* for unboundedly many *i* < cf(µ).

A hint: What would happen if this failed? Why would a scale be useful?

イロト イポト イヨト イヨト

= 990

Corollary

 $\aleph_{\omega+1}$ carries a Jonsson algebra.

In general, if μ is singular and μ^+ is Jonsson, then no increasing sequence $\langle \mu_i : i < cf(\mu) \rangle$ consisting of successors of regular cardinals can be part of a scale for μ .

In general, if μ is singular and μ^+ is Jonsson, then no increasing sequence $\langle \mu_i : i < cf(\mu) \rangle$ consisting of successors of regular cardinals can be part of a scale for μ .

This can be shown to imply that no collection of μ^+ sets in $[\mu]^{<\mu}$ can cover $[\mu]^{cf(\mu)}$, and this in turn is enough to conclude ADS_{μ} holds.

イロト イポト イヨト イヨト

If μ is singular and μ^+ is a Jonsson cardinal, then

メロト メぼト メヨト メヨト

ъ

If μ is singular and μ^+ is a Jonsson cardinal, then

• $\operatorname{Refl}(\mu^+)$ holds, but

イロト イポト イヨト イヨト

If μ is singular and μ^+ is a Jonsson cardinal, then

- Refl(µ⁺) holds, but
- so does ADS_μ.

ъ

If μ is singular and μ^+ is a Jonsson cardinal, then

- Refl (μ^+) holds, but
- so does ADS_μ.

Schizophrenia. And it gets worse.

(二)、(四)、(三)、(

크 > 크

Theorem

If μ is singular and μ^+ is Jonsson, then there is a proper ideal I on μ^+ such that

- I extends the non-stationary ideal
- I is cf(µ)-complete
- I is θ-indecomposable for all regular θ such that cf(μ) < θ < μ (so I is closed under increasing unions of length θ)
- I is weakly σ-saturated for some σ < μ (so we cannot find σ disjoint I-positive sets).

イロト イヨト イヨト イ

Recall that last time we saw that ADS_{μ} implies that we can find μ^+ disjoint *J*-positive sets whenever *J* is a $cf(\mu)$ -indecomposable ideal on μ^+ containing all bounded sets.

- ⊒ →

Recall that last time we saw that ADS_{μ} implies that we can find μ^+ disjoint *J*-positive sets whenever *J* is a $cf(\mu)$ -indecomposable ideal on μ^+ containing all bounded sets.

If μ^+ is Jonsson, then there are ideals "close to being dual to an ultrafilter" that are indecomposable for every regular cardinal other than cf(μ). Recall that last time we saw that ADS_{μ} implies that we can find μ^+ disjoint *J*-positive sets whenever *J* is a $cf(\mu)$ -indecomposable ideal on μ^+ containing all bounded sets.

If μ^+ is Jonsson, then there are ideals "close to being dual to an ultrafilter" that are indecomposable for every regular cardinal other than cf(μ).

Schizophrenia.

So what do these ideals look like? They come from club-guessing, and we'll look at one example.

イロト イポト イヨト イヨト

Assume μ is singular of countable cofinality, and let $S = S_{\aleph_0}^{\mu^+}$.

Assume μ is singular of countable cofinality, and let $S = S_{\aleph_0}^{\mu^+}$. For $\delta \in S$, let C_{δ} be cofinal of order-type ω such that $\langle cf(\alpha) : \alpha \in C_{\delta} \rangle$ increases to μ .

イロト イポト イヨト イヨト

э.

Assume μ is singular of countable cofinality, and let $S = S_{\aleph_0}^{\mu^+}$. For $\delta \in S$, let C_{δ} be cofinal of order-type ω such that $\langle cf(\alpha) : \alpha \in C_{\delta} \rangle$ increases to μ .

Further assume that for every closed unbounded $E \subseteq \mu^+$, there are stationarily many $\delta \in S$ such that $C_{\delta} \subseteq^* E$ (modulo finite).

Assume μ is singular of countable cofinality, and let $S = S_{\aleph_0}^{\mu^+}$.

For $\delta \in S$, let C_{δ} be cofinal of order-type ω such that $\langle cf(\alpha) : \alpha \in C_{\delta} \rangle$ increases to μ .

Further assume that for every closed unbounded $E \subseteq \mu^+$, there are stationarily many $\delta \in S$ such that $C_{\delta} \subseteq^* E$ (modulo finite).

イロト イ押ト イヨト イヨトー

(Do such things actually exist?)

A set $A \subseteq \mu^+$ is in *I* if there is a club $E \subseteq \mu^+$ such that $\{\delta \in S : E \cap A \cap C_{\delta} \text{ is infinite} \}$ is non-stationary.

(2)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○

• $\mu^+ \notin I$

A set $A \subseteq \mu^+$ is in *I* if there is a club $E \subseteq \mu^+$ such that $\{\delta \in S : E \cap A \cap C_{\delta} \text{ is infinite}\}$ is non-stationary. (2)

- $\mu^+ \notin I$
- *I* is an ideal extending the non-stationary ideal.

イロト イポト イヨト イヨト

э.

A set $A \subseteq \mu^+$ is in *I* if there is a club $E \subseteq \mu^+$ such that

 $\{\delta \in S : E \cap A \cap C_{\delta} \text{ is infinite}\}$ is non-stationary. (2)

イロト イポト イヨト イヨト

э.

- $\mu^+ \notin I$
- *I* is an ideal extending the non-stationary ideal.
- If θ is an uncountable regular cardinal, then *I* is θ -indecomposable.

A set $A \subseteq \mu^+$ is in *I* if there is a club $E \subseteq \mu^+$ such that

 $\{\delta \in S : E \cap A \cap C_{\delta} \text{ is infinite}\}$ is non-stationary. (2)

- $\mu^+ \notin I$
- *I* is an ideal extending the non-stationary ideal.
- If θ is an uncountable regular cardinal, then *I* is θ -indecomposable.
- If μ⁺ is a Jonsson cardinal, then *I* is not weakly μ-saturated. (Actually, we can improve this, but this makes the point.)

ヘロト 人間 とくほとく ほとう